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Self-induced flow occurs when a tube, with one end open and the other sealed, is rotated 
about its axis: fluid flows along the axis towards the sealed end and returns in an annular 
layer on the cylindrical wall. Numerical solutions of the Navier-Stokes and energy 
equations have been obtained for laminar flow, and the Reynolds analogy has been used 
to provide theoretical correlations for the average Nusselt numbers on the end wall of the 
tube. Heat transfer measurements have been made in a rotating-tube rig, and the measured 
Nusselt numbers are, in the main, in good agreement with the computed values. 
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1. I n t r o d u c t i o n  

Self-induced flow occurs where a tube, with one end open and 
the other sealed, is rotated about its axis : fluid flows along the 
axis towards the sealed end and returns in an annular layer on 
the cylindrical surface. 

A chance discovery was made by Rolls Royce engineers 
during anti-icing tests on the nose bullet of an aeroengine. The 
rotating nose bullet, which was attached to the compressor 
shaft at the front of the engine by an anti-icing tube, was kept 
free of ice by blowing hot air along the hollow shaft, as 
illustrated in Figure 1. The hot air, extracted from the enclosed 
space next to the last stage of the turbine, flowed along the 
compressor shaft, passed through the anti-icing tube, and 
impinged on the back of the nose bullet. Unfortunately, after 
being exhausted through vents in the nose bullet, the hot air 
was ingested into the compressor intake, causing a loss of 
performance. 

The engineers overcame the problem of ingestion by blocking 
the outlet holes in the anti-icing tube. This, they believed, would 
reduce the effectiveness of the anti-icing system, but they hoped 
that the engine would still be able to operate for short periods 
under conditions where icing was liable to occur. Although 
there was no longer a superimposed flow of air through the 
compressor shaft, the anti-icing was surprisingly effective. The 
"hot-poker effect," as it was christened, was attributed to 
thermosyphon effects, and was patented by Rolls Royce in (1979). 

The discovery that this effect was caused by self-induced flow, 
rather than by a thermosyphon phenomenon, was made by 
Owen and Pincombe ( 1981 ). They conducted flow visualization 
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in a circular glass rotating tube and observed the passage of 
smoke along the axis from the open end to the sealed end and 
its return along the cylindrical surface, as shown schematically 
in Figure 2. The authors also conducted some simple heat 
transfer tests that, although inconclusive, supported the 
contention that self-induced flow was responsible for the 
hot-poker effect found by the Rolls Royce engineers. Owen and 
Pincombe used the term long-tube for the case where the 
self-induced flow did not reach the sealed end, and short-tube 
for the case where it did. The long-tube case is associated with 
tubes of large length-to-diameter (L/D ) ratios or low rotational 
speeds; the short-tube case is associated with small L/D ratios 
or high rotational speeds. 

The principle of self-induced flow can be explained in simple 
terms. Consider an isothermal rotating tube sealed at both 
ends: solid-body rotation occurs, and the resulting centripetal 
acceleration of the fluid is balanced by the pressure gradient; 

Anti-icing flow 

Anti-icing tube 

Turbine / Compressor 

Compressor/turbine drive shaft 

Figure ! Schematic diagram of a gas-turbine aeroengine showing 
anti-icing system for the nose bullet 
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Figure2 Schematic diagram showing self-induced flow in a 
rotating tube 

at the ends of the tube, the radial pressure gradient is reacted 
by forces on the end walls. However, if an end wall is removed, 
the pressure gradient can no longer be balanced: the 
high-pressure fluid near the outside of the tube flows out of the 
open end to be replaced by an axial inflow along the axis. While 
this flow may be modified by buoyancy forces, it is not caused 
by them. 

Ivey (1988) extended the above, preliminary, investigation 
of self-induced flow. He used laser-Doppler anemometry (LDA) 
to make measurements of the velocity inside tubes of various 
L/D ratios and tubes with sudden changes of section, or 
"stepped tubes," such as occur in the compressor shafts of 
aeroengines. For  the short-tube case, the flow rate decreased 

with axial distance from the inlet, and air was recirculated 
continuously from the core to the annular layer. The flow and 
heat transfer at the sealed end were similar to the "free-disc" 
case (that is, an infinite disc rotating in a quiescent fluid); 
however, the flow rate at the open end was much larger than 
the free-disc entrainment rate. Ivey also showed that the 
self-induced flow was sensitive to the level of swirl in the air 
outside the open end. For the "stepped-tube" case, he found 
that the flow at the sealed end of the small-diameter tube was 
controlled mainly by the rotational speed and L/D ratio of this 
tube and not by the geometry of the larger tube. 

Gilham (1990) conducted a theoretical investigation and 
obtained numerical solutions of the Navier-Stokes and energy 
equations for a constant-diameter tube. His computed velocity 
profiles were, in the main, in good agreement with Ivey's 
measurements and confirmed that the flow was indeed laminar, 
even at conditions representative of those in aeroengines. 
Gilham also obtained solutions of the so-called "linear 
equations", in which the nonlinear inertia terms in the 
Navier-Stokes equations are negligibly small compared with 
the Coriolis terms. 

The two important nondimensional parameters in this 
problem are the length-to-radius ratio, G, and the Ekman 
number, E, where 

1 
G = (1) 

a 

and 

V 
E - ( 2 )  Qa 2 

N o t a t i o n  

a Internal radius of tube 
b Outer radius of disc at open end of tube 
C m Moment coefficient, M/½pf22a s 
Cp Specific heat at constant pressure 
Cw Nondimensional mass flow rate, m/l~a 
E Ekman number, v/D,a 2 ( = Re~; 1 ) 
E* Modified Ekman number, GE 
Ec Eckert number, fFaZ/CpAT 
G Aspect ratio, I/a 
H Total enthalpy, CpT + ½(u 2 + v 2 + w 2) 
k Thermal conductivity 
I Length of tube 
m Mass flow rate 
M Frictional moment on wall 
Nu Local Nusselt number, qr/k(T~ - To) 
Nu* Modified local Nusselt number, qr/k (To.ad -- To) 
Nuav Average Nusselt number, qava/k (T~ - T o)av 
Nu*v Modified average Nusselt number, 

q,va/k(To.aa- To),v 
p Static pressure 
Pr Prandtl number, I~Cp/k 
q Local heat flux from fluid to wall 
r Radial coordinate 
R Recovery factor 
RMS.  Root-mean-square residual 
Re, Rotational Reynolds number, [ )a2 /v  = E-1 
T Temperature 
u Radial component of velocity 
v Tangential component of velocity relative to a 

stationary frame 

W 

Z 

Axial component of velocity 
Axial coordinate measured from open end of tube 

Greek symbols 

13 
F 
6 
AT 

P 

Coefficient of volumetric expansion 
Diffusion coefficient 
Thickness of boundary layer 
Magnitude of temperature difference between fluid 
and wall, [To~ - To[ 
Nondimensional temperature, 
(T -- To)/(T ~ - To) 
Dynamic viscosity 
Kinematic viscosity, iz/p 
Density 
Tangential component of shear stress 
Angular speed of tube 
Gas constant 

Subscripts 

a 

ad 
atm 
av 
fd 
flux 
l 
O 

r ,  ¢ ~  Z 

0 

Value at cylindrical wall, r = a 
Adiabatic value 
Atmospheric value 
Radially-weighted average value 
Free-disc value 
Pertaining to fluxmeter 
Value at end wall, z = 1 
Value at cylindrical or end wall 
Radial, tangential, axial directions 
Pertaining to dependent variable 
Pertaining to fluid at inlet to system 
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Gilham's linear solutions showed that, for large values of G 
and small values of E, the solutions could be characterized by 
a single nondimensional parameter, E*, a modified Ekman 
number defined as 

E* = GE (3) 

For E* > 0.2, the long-tube case, recirculation is confined to 
the open end of the tube, and the axial component of velocity 
decays exponentially along the tube. For E * <  0.2, the 
short-tube case, recirculation occurs throughout the tube, and 
an Ekman layer (Ekman 1905) forms on the center of the end 
wall. For E* < 0.0025, there is an inviscid central core with 
Stewartson-type layers (Stewartson 1957) on the cylindrical 
surface and an Ekman layer over most of the end wall. These 
regimes are similar to those found by Brouwers (1976) for the 
linear equations applied to a rotating tube with differentially 
rotating porous end walls. For the anti-icing tube mentioned 
above, G ~, 30 and E* ~ 0.002. 

The self-induced flow in constant-diameter and stepped tubes 
has been described in detail by Gilham et al. (1991, 1992a). 
The work described below concentrates mainly on the related 
heat transfer to the end wall; heat transfer to the cylindrical 
wall of the tube, and the application to the design of anti-icing 
systems, is reported by Gilham et al. (1992b). 

The numerical method is outlined in Section 2, the apparatus 
is described in Section 3, and the heat transfer results are 
discussed in Section 4. 

2. Numerical method 

2.1. Equations of motion and energy equation 

For a Newtonian fluid, the equations governing the 
conservation of momentum, mass, and energy are given by the 
Navier-Stokes, continuity and energy equations. In stationary 
cylindrical-polar coordinates (r, 4, z), assuming the flow to be 
steady, axisymmetric, and laminar, the equations are (see Bird, 
Stewart, and Lightfoot 1960): 

0 t?p pv 2 1 0 {4 t3u'~ 1 (pru 2) + (pwu) = - - -  + - -  + - -  
Or r rt3r\31~ror//_- = !  

O ( # d u )  2uO# 4 u 

Vz 3r0r  3 'r ' 

30r I ~ z  + ~ \  dr]  (4) 

1 8  0 puv 1 0 ( O r )  
- Or (pruv) + r Oz (pwv) = ---r  + r --Or ur Or 

0 ( ~v~ .v  you 
"t- O~ \ OZJ r 2 rdr 

0 1 (pruw) + (pw 2 ) 
r Vzz 

0p + r /Jr + 
dz 

2 0 ( 1 0 )  
3 0z I~ r ~r ( ru ) 

(5) 

0 ( 4  dw) 

Vz 

1 (pru) + (pw) = 0 
r 

10 { Ou~ 
+ r ~ / ~ r  ~z) (6) 

(7) 
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1 0 ( p r u H )  + 0 = l  O ( k r O H  ~ 
;aS  (pwH) rOr\C. Or/ 

0 ( k  OH) 
(8) 

where 

S"=r  2r 2 

+ d~ # - Oz \ 2 

+ - -  /tr u u . . . .  l- w 
r dr Or 3 r 3 Oz r OzJJ 

o[(ow ,ow w  )] 
+ t?~ I~ u ~r + ~ W or 3 r or ( rU ) (9) 

Here p, p, and/~ denote pressure, density, and dynamic viscosity, 
respectively, and (u, v, w) are the velocity components in the 
(r, 4~, z) directions. The stagnation enthalpy is denoted by H 
(H = CpT + ½(u z + v 2 + wS)), Cp is the specific heat capacity, 
which is assumed constant in the derivation of Equation 8, and 
k is the thermal conductivity. 

Solutions are presented below for both compressible and 
incompressible flow. For compressible flow, it was assumed 
that the density p was given by the equation of state for a 
perfect gas : 

P p - (10) 
9tT 

Here ~ denotes the gas constant, which for air is 287 J/kgK, 
and T the temperature in Kelvin. The dynamic viscosity, /~ 
[kg/ms] ,  was assumed to vary according to Sutherland's law, 
which for air is 

1.46 x 1 0 - 6 T  3/2 
U - (11) 

(110 + T) 

The thermal conductivity, k [ W / m K ] ,  was evaluated according 
to 

k = pCp (12) 
Pr 

where Pr is the Prandtl number, which was assumed constant 
and equal to 0.71, and Cp was taken as 1.00 kJ/kgK. 

For incompressible flow, the density, viscosity and 
conductivity were assumed to be constant, which allowed 
Equations 4 to 9 to be simplified. 

2.2. Boundary conditions 

2.2.1. Open end of  tube. It is difficult to specify boundary 
conditions at the open end of the tube (z = 0, r < a), since 
there is strong recirculation here. In his experiments, Ivey 
(1988) used a stationary enclosure around the open end, but 
Gilham (1990) found that the problem of computing the flow 
inside the enclosure could be as difficult as that of computing 
the flow in the rotating tube. 

As shown in Figure 1, in an aeroengine there is a rotating 
disc attached to the compressor shaft near the open end. Ivey 
found that the attachment of a rotating disc to the open end 
of the rotating tube had only a small effect on the velocity 
measured near the sealed end. The inclusion of a rotating disc 
in the mathematical model of the rotating tube has the 
advantage of simplifying the specification of the boundary 
conditions near the open end. By placing the boundaries on 
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cylindrical 
wall 

(v) 

(iv) 

end 

Figure 3 Domain of integration for the rotating tube and disc 
(Roman numerals refer to boundaries) 

the left-hand side of the disc (see Figure 3), the fluid enters the 
system axially through boundary (i) and leaves radially through 
boundary (vi). 

The problem can be further simplified by applying the von 
Karman (1921) equations for the "free disc" to an annular 
disc, of inner radius a and outer radius b, attached to the open 
end of the rotating tube (see Gilham et al. 1991a). Boundary 
(i) shown in Figure 3 is assumed to be far enough away from 
the disc for the conditions at infinity to apply at z = - s, so that 

u = 0 ,  v = 0 ,  P=Pat. , ,  a t z = - s  (13) 

where P=tm is the atmospheric pressure. The radius of the disc 
is assumed to be large enough so that the yon Karman similarity 
solutions are applicable, and 

=0, =0, 0~=° '  Or 

Equations 13 and 14 ensure that, as for the free-disc case, 
fluid enters the system axially through boundary (i) and leaves 
radially through boundary (vi). 

The radius of the disc was set at b = 5a and, for most cases, 
s = a, which ensured that 6 << s, where 6 = 5.5x/~-/Q is the 
approximate thickness of the boundary layer on the free disc. 
For the case of a solid disc, Gilham (1990) found that a value 
of s = 46 was sufficient to ensure that the computed velocity 
profiles were in good agreement with the free-disc solutions of 
Rogers (see Owen and Rogers 1989). 

2.2.2. Conditions for the six boundaries. All solid surfaces were 
assumed to be at the same temperature, T = To, and no-slip 
conditions were applied at these surfaces. At the inlet to the 
system, the fluid temperature T o was taken to be 20°C, and 
the free-disc conditions discussed above were used for the 
velocity. The atmospheric pressure was taken to be Patm = 1 bar, 
and all nondimensional parameters were based on properties 
calculated at T = T~ and p = Patm. For the tube axis, r = 0, 
symmetry conditions were assumed for w and T. 

The conditions for the six boundaries shown in Figure 3 are 
given below. 

(i) z= ~s,O~r<~b:u=O,v=O,p=p,tm, T = T ~  
(ii) z=O,a<~r<~b:u=O,v=f~r,w=O,T= To 

(iii) z=l,O<~r<~a:u=O,v=~r,w=O,T= To 

0 ow 0 0T 
(iv) r=O,--s<~z<~l:u=O,v= 'Or cr = , ~ - = 0  

(v) r=a,O<~z<~l:u=O,v=f2a, w=O,T=To 

(vi) r = b , - s ~ z < ~ o :  'Or Or = 0 , - - = 0  

(15) 

2.3. Solut ions o f  f in i te-di f ference equat ions 

The finite-difference equations were obtained by integrating the 
momentum and energy equations over a control volume formed 
m a rectangular, nonuniform, staggered grid system, as 
recommended by Patankar (1980) and Patankar and Spalding 
(1972). The nonuniform grid was generated using a geometric 
progression, with a maximum grid-expansion factor of 1.3. 

Equations 4, 5, 6, and 8 can be expressed in the common 
form : 

1 0  1 0 (  0(b) 
r ~ (pru~,) + ~ (pw,~) =;  ~ rr®,, ~r 

a [ o¢\ 
+ ~zz ~Vo.= ~ z )  + S, (16) 

where ~ represents the dependent variables u, v, w, and H, Fo,,, 
and Fo.= are diffusion coefficients and So is a source term. 
Integration of Equation 16 over a control volume (see Patankar 
1980) leads to the finite-difference equation: 

Ap,odp~ = ZnbAnb,o(l~nb + S1,¢ "k- S2,o¢TPp (17) 

Here E.b represents the summation of the coefficients over four 
neighboring nodes, ~.~ are the values of ~ at these nodes, Sl,o 
and Sz.o are the coefficients of the iinearized source term, and 
A~,o and A.b,O are coefficients resulting from the integration. 
Further details are given by Gilham (1990). 

The continuity equation, Equation 7, was used to devise a 
pressure-correction equation, as described by van Doormaal 
and Raithby (1984). This equation, which has the same form 
as Equation 17, has the dual role of determining the pressure 
and satisfying continuity. 

Boundary conditions were applied at the boundary nodes, 
and derivatives were calculated by second-order backward 
differences or central differences. When the pressure at a 
boundary was specified, the pressure-correction was set to zero. 
This implied that continuity was satisfied for that cell, which 
allowed the continuity equation to be written in a 
finite-difference form that could be solved to evaluate the 
velocity components. Starting conditions were obtained by 
setting all variables to zero. 

The resulting finite-difference equations were solved using 
the nonlinear multigrid algorithm of Vaughan et al. (1989), 
and further details are given by Gilham (1990). Underrelaxa- 
tion was implemented implicitly, via the coefficients, for the 
momentum and energy equations and explicitly for the 
pressure; underrelaxation factors were in the range 0.3 to 0.8. 
Numerical instabilities resulting from the strong coupling 
between the radial and tangential momentum equations were 
reduced by the method suggested by Gosman et al. (1976). 

Convergence was tested by means of a root-mean-square 
residual, RMSo, defined as 

RMSo = 2 , / ( ~ n  -- ~ n -  1)2/~'~ ((l)n)2 
i j  ~ t i j  

where (b", ¢I)"-~ are the current and previous iterative values 
of the dependent variable on the finest mesh, and ~u is the 
summation over all grid nodes. Convergence was based on the 
criterion that RMS o was less than a specified value, and overall 
balances in conserved quantities were also used to ensure 
convergence; for momentum and continuity, RMSo < 10-~, 
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and for energy, RMS# < 10- 6. As discussed by Gilham (1990), 
computed values of moment coefficients and Nusselt numbers 
were in good agreement with solutions of the linear equations; 
although only limited grid-dependency tests were conducted, 
the results presented in this paper should be accurate enough 
for all practical purposes. 

Computations were conducted for 5 ~< G ~<40 and 
5 x 10- 5 ~< E ~< 0.04, and the number of nodes used depended 
on G and E. For example, for G = 10 and E = 2 x 10 -3 , a 
total of 128 axial and 65 radial nodes were used in the tube, 
and 65 axial and 97 radial nodes were used in the region outside 
the open end. For incompressible flow, the multigrid method 
required 89 iterations for solution of the momentum equations, 
which took 672 minutes of CPU time on a VAX 8530 computer; 
solution of the energy equation required 29 iterations, which 
took 97 CPU minutes. More time was required for the 
compressible cases, since the momentum and energy equation 
could not be uncoupled; as a consequence, comparatively few 
computations were made for compressible flow. 

3. Experimental apparatus 

3. 1. Heat transfer rig 

The heat transfer rig is shown in Figure 4. The rotating tube, 
which was made from stainless steel, was 531 mm long and 
37 mm in diameter (G ~ 28.8). One end of the tube was sealed 
by an end cap, which housed a heat-fluxmeter, and the other 
end opened into a large, stationary open-end enclosure. The 
temperature of the air inside the enclosure was varied by means 
of an electric heater. 

The rotating tube assembly was mounted in ball bearings 
and was driven, via a toothed belt and pulley system, by a 
variable-speed electric motor. The rotational speed, which 
could be varied up to 5200 rev/min, was measured to an 
accuracy of 1 percent by a stationary transducer and a rotating 
inductive disc attached to the tube. 

The cylindrical surface of the rotating tube was surrounded 
by an annulus, with a radial height of 10mm, and the 
temperature of the cylindrical surface was controlled by varying 
the temperature of the air blown through the annulus. A bearing 
sleeve, passing through the inner race of the ball bearings, 
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formed part of the outer wall of the annulus, and the rotating 
tube was driven by three radial supports attached to each sleeve. 
The remainder of the outer wall of the annulus was formed by 
stationary tubes, on either side of the bearing sleeves. Air 
entered and left the annulus through ducts attached to the 
stationary tubes, and seals were used to minimize leakage 
between the rotating and stationary components. 

3.2. Thermal instrumentat ion 

Eight copper-constantan thermocouples were used to measure 
the temperature of the outer surface of the tube, and a further 
eight were used to measure the air temperature on the axis 
(r = 0). The signals from the rotating thermocouples, together 
with those from the fluxmeter described below, were brought 
out through a silver slip-ring assembly attached by drive-tubes 
to the sealed end of the tube, as shown in Figure 4. The air 
temperatures in the stationary enclosure at the open end, and 
in the ducts entering and leaving the annulus, were measured 
by stationary thermocouples. The thermocouple voltages were 
measured by a computer-controlled Solartron data-logger, the 
digital voltmeter of which had a resolution of 1 #V 
(approximately 0.02°C for copper-constantan thermo- 
couples). The maximum errors in the measured temperatures 
of the rotating and stationary thermocouples were determined 
as 0.5°C and 0.2°C, respectively. 

The average heat flux through the sealed end of the tube was 
measured by means of a purpose-built fluxmeter (see Figure 
5), which was designed to promote an axial flow of heat from 
a copper disc to a copper plug, the latter being cooled by 
convection to the surrounding atmosphere. The fluxmeter was 
of composite construction comprising a thermal insulator 
(k ~ 0 .2W/mK)  of 1-mm thickness and 24-mm diameter 
sandwiched between the copper disc of 0.5-mm thickness and 
the copper plug of 6-mm thickness, with copper-constantan 
thermocouples embedded in the faces of the disc and plug on 
either side of the insulator. The dimensions of the copper disc 
were chosen to reduce radial heat transfer and to provide a 
uniform temperature on the adjacent insulator. The outer flat 
surface of the copper disc, which was exposed to the self-induced 
flow in the rotating tube, was gold plated (emissivity ~ 0.05) 
to reduce radiation between the disc and the tube surface. The 
fluxmeter assembly was surrounded with a cylindrical layer of 
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Figure 4 Heat transfer rig 
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Figure 5 Details of fluxmeter. ×, Location of thermocouples 

thermal insulation, k ~ 0.04 W/mK, to reduce radial conduc- 
tion to the tube, and the assembly was clamped to the end of 
the tube by means of an end cap. 

The fluxmeter was calibrated statically, in a purpose-built 
calibration rig, by heating the copper disc with a thin-foil 
electric heater and cooling the copper plug with an air jet. The 
uncertainty in the effective heat transfer coefficient measured 
during the calibration was + 3 percent, and the flux values were 
consistent with the manufacturers' quoted thermal conductivity 
for the materials used. (The uncertainties in the calibration and 
in the measured temperature differences were used to estimate 
the experimental uncertainties in the Nusselt numbers shown 
in Figures 9 and 10.) 

Full details of the fluxmeter, instrumentation, calibration, 
and experimental uncertainties are given by Ivey (1988). 

4.  H e a t  t r a n s f e r  in  t h e  r o t a t i n g  t u b e  

4. 1. Computed isotherms 

Figure 6 shows the computed isotherms for incompressible flow 
f o r G = 4 0 a n d E * = 2 x  10 -2 , 2 x  10 - a , a n d 2 x  10 -4 . The 

nondimensional temperature, 0, is defined as 

0 - T - T O (18) 
T ~ - T o  

where the temperature of the air at inlet to the tube is T= = 20°C 
and the wall temperature is To = 0°C. This corresponds to the 
so-called "heating case" where the air is hotter than the tube 
( T ~  > T o). Isotherms for the "cooling case" (T= < To), and 
for other values of G, are similar to those shown in Figure 6. 

Owing to the scale chosen for the figure, the steep gradients 
cannot be seen at the sealed end, where 0 = 0 .  This is 
particularly true for E* = 2 x 10 - 3  and 2 x 10 -4, where the 
Ekman layer (the thickness of which is proportional to E t/2) 
is very thin. 

In all cases, heat flows from the open end towards the sealed 
end. For E* = 2 × 10 -2, where the self-induced flow is very 
weak, the heat transfer is mainly by conduction. For the other 
cases, the thermal boundary layer on the cylindrical surface 
becomes thinner as E* is reduced ; the same is true of the thermal 
boundary layer on the end wall, but, as stated above, this cannot 
be seen owing to the scale of the figure. For E* = 2 x 10-4, 
the temperature of the core of fluid near the axis is virtually 
isothermal and equal to the temperature of the air outside the 
tube: the isotherms shown are inside the velocity boundary 
layer on the cylindrical surface. 

4.2. Computed Nusselt numbers for the sealed end 

Gilham et al. (1991a) showed that the flow near the end wall 
of the rotating tube was similar to that of the free disc. For an 
isothermal (T = To) free disc rotating in air (Pr = 0.71), the 
exact solution of the incompressible energy equation with 
negligible viscous dissipation (see Owen and Rogers 1989 ) gives 

E '/2 N u t =  0.326(~) (19) 

where Nut, the Nusselt number for the end wall, is defined as 

Nul -- qtr (20) 
k ( T ~  - To) 

and 

12'1 
qt = \ Oz /==t 
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Figure 7 Computed radial variation of Nusselt numbers at sealed 
end for heating case: G = 4 0 .  E * = 2 x  10-2;  E c =  
1 .15  x 1 0 - 4 ;  - - - - - ,  E * = 2 x 1 0 - 3 ;  Ec = 1 .15  x 1 0 - 2 ; - - . - - , E  * = 
2 x 10-4;  Ec = 1.15; , Equation 19 

Figure 7 shows the computed variation of E 112 Nut with r /a  
for the heating case with G = 40 and E* = 2 x 10 -2, 2 x 10 -3, 
2 x 10-4; also shown is the free-disc result given by Equation 
19. The Nussclt number increases with radius, reaches a 
maximum, and then decreases towards the outer edge of the 
end wall at r /a  = 1. This decrease is associated with the 
boundary layer on the cylindrical surface, which was referred 
to above. For  E* = 2 x 10 -2, the Nusselt number is small; for 
E* = 2 x 10- 3, Nut is close to the free-disc value for r /a  < 0.7 ; 
for E* = 2 x 10 -4, Nut exceeds the free-disc value over most 
of the radius. 

As E* is reduced, two effects occur : more of the end wall is 
exposed to the self-induced flow, and viscous dissipation 
increases. Dissipation, or frictional heating, increases the 
transfer of heat from the fluid to the end wall. For  the heating 
case discussed above, frictional heating can increase the Nusselt 
number above the free-disc value. For  the cooling case, 
however, frictional heating reduces the Nusselt number so that 
it is always lower than the free-disc value. 

The magnitude of the frictional heating depends on the Eckert 
number, Ec 

~2a2 
Ec - (22) 

(?pAT 

where A T = I T o ~ - T o l .  For  G = 4 0  and E * = 2 x  10 -2 , 
2 x 10 -3 and 2 x 10 -4, Ec = 1.15 x 10 -4, 1.15 x 10 -2 and 
1.15, respectively. 

The influence of frictional heating on the calculated Nusselt 
number can be reduced by the use of an adiabatic-disc 
temperature To.=d (see Owen and Rogers 1989) where 

~'~2r2 
To.ad = T o + R - -  (23) 

2cp 
and R is a recovery factor, which for air can be approximated 
by R ~ Pr 1/3. A modified Nusselt number is then defined as 

Nu* - qtr (24) 
k(To.ae - To) 

and this is less sensitive than Nul  to the Eckert number. 
Although large values of Ec have been used in the computations, 

Self-induced flow and heat transfer in a rotating tube: S. Gilham et al. 

the effect of frictional heating is usually negligible for engine 
applications. 

It is also instructive to apply the Reynolds analogy (see Owen 
and Rogers 1989) to the end wall. For  the case of the free disc 
with a quadratic temperature distribution ( To - To  oc r 2 ) and 
for a Prandtl number of unity, the Reynolds analogy can be 
expressed as 

Cm,t 
E Nu~,~ - (25) 

~r 

where Nu~=v is the modified average Nusselt number. The 
moment coefficient, Cm,t, is defined by 

M, 
Cm.s - ½p~2a5 (26) 

where Ma is the frictional moment on the rotating disc. 
Equation 25, the Reynolds analogy, is exact only for the 
conditions stated above; for an isothermal disc and for 
Pr = 0.71, a modified Reynolds analogy is used, and the Nusselt 
number is given by 

E Nu~,av = 0.529 Cma (27) 

The variation of E-1/2Cm, t with E *~/4 is shown in Figure 8a. 
The computations were carried out for G = 40, but similar 
results (not shown here) were obtained for 5 ~< G ~< 40. The 
numerical results can be correlated for 2 x 1 0 - 4 <  E * <  
2.6 x 10 -2 by 

E -  1/2Cm, I = 2.36 - 4.89E .1/4 (28) 

For  E* > 0.2, the long-tube case, Cma = 0, and a transition is 
expected between E* = 0.026 and 0.2. The free-disc value, 

E -  x/2Cm, t = 1.94 (29) 

is also shown, and there is, presumably, a transition to this 
value as E* tends to zero. 

Applying the modified Reynolds analogy, Equation 27, to 
the correlated moment coefficient, Equation 28, gives 

E 1/2 Nu~,,, = 0.397 - 0.824E .1/4 (30) 

This equation is shown in Figure 8b together with the 
computed Nusselt numbers for 5 ~< G ~< 40; the computations 
were carried out for the heating case, To > To and Ec < 0.3. 
The scatter that occurs at the smaller values of E* is caused 
more by the effect of dissipation than by the effect of G itself: 
for a given value of E*, E reduces and Ec increases with G. 
Use of Nu~,=v rather than Nu~,=, attenuates, but does not 
eliminate completely, the effect of dissipation. Consequently, 
the difference between the computed results and Equation 30 
is greater at the larger values of G. The Reynolds analogy 
overestimates the Nusselt number at the larger values of E* : 
under these conditions, little of the end wall is exposed to the 
core flow, and the analogy is inappropriate. However, for 
2 x 10 -4 < E* < 2 x 10 -3 and Ec < 0.3, Equation 30 should 
be reasonably accurate. (It is worth noting that for the anti-icing 
tests referred to in Section 1, G ~- 30, E* ~- 2 x 10 -3, and 
Ec<< 1.) 

4.3. Ef fec ts  o f  b u o y a n c y  

As stated in Section 1, the "hot-poker effect" was originally 
thought to be related to the thermosyphon. However, 
self-induced flow can occur under isothermal conditions and it 
is not, therefore, a thermosyphon effect. Buoyancy can, of 
course, modify the flow and heat transfer to the end wall of 
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Figure 8 Computed moment  coeff icients and average Nusselt 
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the tube and, to quantify these effects, some solutions of the 
compressible equations 4 to 9 were obtained. 

Buoyancy effects can be characterized by flAT, where fl is 
the coefficient of volumetric expansion (for air, fl = T ~ '  ), and 
AT = I T~ - 7"ol. (For the anti-icing tests referred to in Section 
1, f lAT "~ 0.3. ) Table 1 shows the effect of f lAT on E */2 N u ~  
for G = 30 and E* = 0.002 and 0.02. It can be seen that when 
f lAT is increased, the average Nusselt number increases in the 
heating case (T o < Too ) and decreases in the cooling case 
( To > T® ). It can also be seen that the effect of flAT is relatively 
small for E* = 0.002, but is relatively large for E* = 0.02. 

These effects can be explained by considering the flow near 
the sealed end of the tube. For large values of E*, where the 
fluid near the end wall is in virtual solid-body rotation and the 
Nusselt numbers are small, the buoyancy forces will tend to 
cause the colder fluid to move radially outward and the hotter 
fluid to move inward. Thus, for the heating case, the 
buoyancy-induced flow assists the self-induced radial outflow 
and increases heat transfer on the end wall; for the cooling 
case, the effect is reversed. For small values of E*, the fluid 
approaches the end wall with very little rotation, and the effects 
of buoyancy are weaker in both the absolute and the relative sense. 

Frictional heating, like buoyancy, increases the heat transfer 
to the end wall for the heating case and reduces it for the cooling 
case. However, unlike buoyancy, frictional heating will have 
the greatest effect on the Nusselt numbers for small values of 
AT and for small values of E. 

4.4. Comparison between theory and experiment 

Ivey (1988), using the apparatus described in Section 3, made 
heat transfer measurements in a tube with G = 28.8. For most 
tests the temperature of the air in the stationary enclosure at 
the open end of the tube was heated to temperatures 
approximately 50°C above the ambient level of around 30°C. 
The hot self-induced flow caused a transfer of heat to the end 
wall, which was cooled externally for most of the tests by the 
impingement of air, at the ambient temperature, onto the outer 
face of the end wall. The temperature of the cylindrical surface 
of the tube was controlled by varying the temperature and flow 
rate of the air circulated through the annulus surrounding the 
tube. 

For the so-called "adiabatic-wall tests," the temperature of 
the cylindrical wall was maintained approximately equal to that 
of the air on the axis of the tube, usually about 50°C above 
the ambient level. For some tests, the cylindrical wall was kept 
at a lower temperature than that on the axis: the cylindrical 
wall was kept at around 33°C, and the typical temperature on 
the axis decreased from around 80°C near the open end to 37°C 
near the end wall. It should be emphasized that both of these 
tests corresponded to the heating case defined above, where 
heat is transferred from the air to the end wall. 

In the experiments, the temperature measured on the axis at 
z / l  = 0.892 (the measuring point closest to the end wall) was 
used to determine the properties of the air; it was also used as 
the reference temperature, T~, for the Nusselt numbers. For 
the adiabatic-wall tests, the air temperature would not be 
expected to vary significantly between this location and the 
edge of the thermal boundary layer on the end wall. 

The heat flux at the end wall was measured by the fluxmeter 
described in Section 3, and the Ekman number, Enux, and the 
average Nusselt number, NUulux were based on the radius of 
the fluxmeter aflux, where anu x = 0.65a. Figure 9 shows the 
variation of Nuui,x with E~d~/2 for the adiabatic-wall tests, 
where the temperature of the cylindrical wall and that of the 
air on the axis were kept at about 50°C above the ambient 
level. Figure 10 shows the case where the temperature of the 
cylindrical wall was kept at a lower temperature than that on 
the axis. For the latter case, the air temperature falls along the 
axis, and the experimentally determined Nusselt numbers are 
expected to be less accurate than those for the adiabatic-wall 
tests. 

Table I Effect o f /~AT on E ~/2 Nu~,av for G = 30 
(a) Heating case (T~ > To) 

£* = 0.002 E* = 0.02 

Incompressible 0.242 0.019 
/~AT = 0.068 0.248 0.026 
/~AT = 0.14 0.254 0.033 

(b )  Cool ing case (T~ < To) 

£* = 0.002 E* = 0.02 

Incompressible 0.241 0.019 
~ T  = 0.068 0.237 0.014 
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Figure 9 Comparison between measured and computed average 
Nusselt numbers at sealed end for G ~ 30: adiabatic-wall tests. 
&, computed values; ©, measured values; l, experimental 
uncertainty; - - ,  Equation 31 

For  reference purposes, the average Nusselt number for an 
isothermal free disc is shown in both figures. The result, 
corresponding to Equation 19, is 

Nut.flux = 0.326Ef~d~/2 (31) 

It should be noted that the constant of proportionality, 0.326, 
is independent of the radius used in the definitions of the Nusselt 
and Ekman numbers. (It is inappropriate to use the correlation 
given by Equation 30 as this only applies to the case where 
heat transfer occurs over the entire surface of the end wall. ) 

The computed Nusselt numbers were obtained for 
incompressible flow with an inlet temperature of To = 20°C, 
for the case where the surfaces of the cylindrical wall and the 
end wall were kept at 0°C. The average Nusselt numbers were 
computed by integrating the heat flux through the end wall 
from r/a = 0 to r/a = 0.65, corresponding to the radial extent 
of the fluxmeter. The computed temperature on the axis at 
z/l  =0.892, corresponding to the location used in the 
experiments, was taken as the reference temperature for the 
Nusselt numbers. For  the computation, G = 30, compared with 
G = 28.8 for the experiments. 

Figures 9 and 10 show similar effects, and the differences 
between the measured and computed Nusselt numbers are, in 
the main, within the experimental errors. Both sets of Nusselt 
numbers are lower than the free-disc curve for the smaller values 
of E -  1/2, and this is consistent with the fact that an increasing 
extent of the fluxmeter is exposed to the self-induced flow as 
the Ekman number is reduced. At the larger values of E -  1/2, 
the computed Nusselt numbers are close to the free-disc curve, 
whereas the experimental data are consistently above the curve. 
For  the reasons stated above, the measured Nusselt numbers 
in Figure 10 are expected to be less accurate than those in 
Figure 9. 

The effects of buoyancy may explain, to some extent, why 
the measured Nusselt numbers exceed the free-disc values. For  
the adiabatic-wall tests, where f lAT~0 .15 ,  the Nusselt 
numbers at E~2~/2 = 60 (E* ~ 3.4 x 10 -3)  are approximately 
10 percent higher than the free-disc values. (The computed 
results for compressible flow given in Table 1 for E* = 2 x 10- a 
and flAT = 0.14 show an increase of around 5 percent for 
Nusseit numbers based on the entire surface of the end wall.) 
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Figure 10 Comparison between measured and computed average 
Nusselt numbers at the sealed end for G ~ 30: nonadiabatic-wall 
tests. &, computed values; ©, measured values; J, experimental 
uncertainty; , Equation 31 

Adiabatic-wall tests conducted at a higher temperature (where 
flAT ~ 0.28) produced experimental Nusselt numbers slightly 
higher than those discussed above, which supports the 
contention that buoyancy effects may have played some part 
in increasing the Nusselt numbers above the free-disc values. 

5.  C o n c l u s i o n s  

Numerical solutions of the Navier-Stokes and energy 
equations have been obtained for the case of self-induced flow 
in a rotating tube with one end open and the other sealed. The 
heat transfer through the end wall has been measured in a tube, 
with a length of 531 mm and a diameter of 37 mm, rotating at 
speeds up to 5,200 rev/min in air. 

The Reynolds analogy has been used to obtain a correlation 
for the computed average Nusselt numbers for the end wall, 
and an adiabatic-wall temperature is used to reduce the effects 
of viscous dissipation in the computed Nusselt numbers, which 
are in good agreement with the measured values. Frictional 
heating and buoyancy effects can increase the heat transfer to 
the end wall for the heating case (where the air is hotter than 
the wall), and can reduce it for the cooling case. 

The heat transfer at the sealed end of the tube is shown to 
be similar to that associated with the laminar free-disc case, a 
finding that is consistent with earlier studies of the fluid 
dynamics of self-induced flow. Whilst buoyancy effects can 
modify the flow and heat transfer within the tube, they are 
unlikely to affect significantly the Nusselt numbers that occur 
inside the anti-icing tubes of aeroengines. 

The effects of self-induced flow on the heat transfer to the 
cylindrical wall of a rotating tube, and the application to the 
design of anti-icing systems in aeroengines, is reported by 
Gilham et al. (1992b). 
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